
EDAMmap
Release 1.1.2-SNAPSHOT

Feb 06, 2023

Contents:

1 What is EDAMmap? 3
1.1 Background . 3

1.1.1 bio.tools . 3
1.1.2 EDAM . 3
1.1.3 EDAMmap . 4

1.2 Outline . 4
1.3 Install . 4
1.4 Quickstart . 4
1.5 Repo . 4
1.6 Support . 5
1.7 License . 5

2 Manual 7
2.1 Setup . 7

2.1.1 IDF . 7
2.2 Input . 8

2.2.1 CSV . 8
2.3 Parameters . 9

2.3.1 Processing . 10
2.4 Results . 10
2.5 EDAMmap-CLI . 11
2.6 EDAMmap-Server . 13
2.7 EDAMmap-Util . 14

3 API 19
3.1 /api . 19

3.1.1 Query data . 19
3.1.1.1 EDAMmap input . 19
3.1.1.2 bio.tools input . 20

3.1.2 Parameters . 20
3.1.2.1 Main . 20
3.1.2.2 Preprocessing . 21
3.1.2.3 Fetching . 21
3.1.2.4 Mapping . 21

3.1.3 Response . 27
3.1.3.1 core . 27
3.1.3.2 full . 30

i

3.1.4 Examples . 31
3.2 Prefetching . 33

3.2.1 /api/web . 33
3.2.1.1 Request . 33
3.2.1.2 Response . 34

3.2.2 /api/doc . 34
3.2.3 /api/pub . 34

3.2.3.1 Request . 34
3.2.3.2 Response . 34

3.2.4 Example . 34
3.3 Error handling . 35

3.3.1 400 Bad Request . 35
3.3.2 500 Internal Server Error . 35
3.3.3 Examples . 36

3.3.3.1 Syntax error in JSON . 36
3.3.3.2 Bad parameter value . 36
3.3.3.3 Some other illegal requests . 36

4 Ideas for future 39
4.1 General . 39
4.2 Algorithm . 39

4.2.1 Parameters . 40
4.2.2 Weights . 40
4.2.3 Measures . 40
4.2.4 Ontology . 40

4.3 Server . 41
4.4 Maintenance . 41

ii

EDAMmap, Release 1.1.2-SNAPSHOT

A tool for mapping various text input to EDAM ontology concepts. It is designed to assist not replace a curator.

Contents: 1

http://edamontology.org/page

EDAMmap, Release 1.1.2-SNAPSHOT

2 Contents:

CHAPTER 1

What is EDAMmap?

A tool for mapping various text input to EDAM ontology concepts. It is designed to assist not replace a curator.

Currently, it is mainly geared towards annotating bio.tools content, hence the structure of input parts: tool name,
keywords, description, publication IDs, link and documentation URLs. The content of publications and web pages will
be downloaded through the use of the PubFetcher library. However, EDAMmap could also be used on arbitrary text
inputs of very different lengths, with results influenceable by a multitude of changeable parameters.

EDAMmap can be run on the command line, but also as a web server. For the latter case, a public web application and
API are available.

1.1 Background

Longer (but somewhat outdated) background information can be found in the thesis where EDAMmap was initially
developed (and the corresponding talk).

1.1.1 bio.tools

In the field of bioinformatics, there are numerous tools, databases and services for solving various biological problems.
To provide a common portal for biologists that need to look for a certain tool, several projects gathering a vast amount
of tools’ metadata available under one web site have been launched. One such project is the ELIXIR tools and services
registry bio.tools.

1.1.2 EDAM

Collecting the descriptions of tools into one common place is not enough – to be useful the entries need clear and ac-
curate curation. In addition, to semantically connect meta-data, simplifying the organisation and merging of resources
and providing better browse and search capabilities, the tools should be annotated in a standardised way, e.g. using
an ontology. In the case of bio.tools, we use the EDAM ontology, which is a simple ontology of well-established
concepts that are prevalent in the field of bioinformatics organised into an intuitive hierarchy. EDAM is divided into 4
branches (topic, operation, data and format) and each term has a preferred label, synonyms, longer definition, etc.

3

http://edamontology.org/page
https://bio.tools/
https://github.com/edamontology/pubfetcher
https://biit.cs.ut.ee/edammap/
https://github.com/edamontology/edammap/blob/master/doc/Automatic%20mapping%20of%20free%20texts%20to%20bioinformatics%20ontology%20terms.pdf
https://github.com/edamontology/edammap/blob/master/doc/Automatic%20mapping%20of%20free%20texts%20to%20bioinformatics%20ontology%20terms%20-%20Talk.pdf
https://bio.tools/
http://edamontology.org/page

EDAMmap, Release 1.1.2-SNAPSHOT

1.1.3 EDAMmap

So far, the process of annotating bio.tools entries with EDAM terms had been a manual affair, being both time-
consuming and prone to mistakes due to unfamiliarity with the annotated tools or EDAM. The process can partly be
automatised by EDAMmap: as input it will take tool description parts (for example name, description, publication IDs,
link and documentation URLs from bio.tools), fetch content corresponding to publication IDs and web page URLs,
tokenise all parts and find EDAM terms whose parts (label, synonyms, definition, etc) best match with the input parts.
Parameters influencing various aspects of the process (like influence of different mapping algorithm parts to the final
score or how many terms to suggest to the user) have been tuned for usage with bio.tools content and EDAM ontology,
but these can be changed by the user at will. EDAMmap is flexible – different input and ontology parts can be omitted
and have very different lengths. But in the end, accurate annotation relies heavily on expert domain knowledge, so
EDAMmap is intended to only enhance curation, not replace the curator.

1.2 Outline

In the Manual, instructions are given on how to obtain or generate Setup files required by EDAMmap, including the
IDF files. In the Input section, the structure of the input submitted as the query is discussed, with the most common file
types being CSV or biotoolsSchema compatible JSON. The many changeable parameters are discussed in Parameters
and output results and result formats in Results. EDAMmap consists of 3 tools: EDAMmap-CLI to run mapping
of multiple queries in parallel on the command-line, EDAMmap-Server enabling mapping of one query in a web
application or through an API, and EDAMmap-Util for running many utility operations.

The EDAMmap API can consumed through the /api endpoint, either by sending requests to the public instance
https://biit.cs.ut.ee/edammap/api or by sending requests to a local instance set up by following the instructions un-
der EDAMmap-Server. Prefetching can be used to pre-store the content of webpages, docs and publications for a
quicker final mapping call. Possible error situations when using the API are described in Error handling.

Lastly, some Ideas for future are discussed.

1.3 Install

Installation instructions can be found in the project’s GitHub repo at INSTALL.

1.4 Quickstart

Use the public web application at https://biit.cs.ut.ee/edammap/ by filling in the “name” and some other fields, e.g.
some “links” and “publications”, and by clicking on “MAP”.

For command-line usage, some simple examples can be found under EDAMmap-CLI.

And for using the API, there are also a few Examples.

1.5 Repo

EDAMmap is hosted at https://github.com/edamontology/edammap.

4 Chapter 1. What is EDAMmap?

https://biotoolsschema.readthedocs.io/
https://biit.cs.ut.ee/edammap/api
https://github.com/edamontology/edammap/blob/master/INSTALL.md
https://biit.cs.ut.ee/edammap/
https://github.com/edamontology/edammap

EDAMmap, Release 1.1.2-SNAPSHOT

1.6 Support

Should you need help installing or using EDAMmap, please get in touch with Erik Jaaniso (the lead developer) directly
via the tracker.

1.7 License

EDAMmap is free and open-source software licensed under the GNU General Public License v3.0, as seen in COPY-
ING.

1.6. Support 5

https://github.com/edamontology/edammap/issues
https://github.com/edamontology/edammap/blob/master/COPYING
https://github.com/edamontology/edammap/blob/master/COPYING

EDAMmap, Release 1.1.2-SNAPSHOT

6 Chapter 1. What is EDAMmap?

CHAPTER 2

Manual

2.1 Setup

Compilation instructions can be found in INSTALL.

For running the mapping, the latest EDAM ontology is required (in OWL format) – it can be downloaded from
http://edamontology.org/page.

The query input to EDAMmap can contain publication IDs and web page URLs, but not the actual content of publica-
tions and web pages – this will have to be fetched. This fetched content could be saved in a file for potential later reuse.
More information about that file (an on-disk key-value store) can be found in PubFetcher’s documentation: Database.
To generate an initial empty database:

$ java -jar edammap-util-<version>.jar -db-init db.db

2.1.1 IDF

For potentially better mapping results, tf–idf weighting could be applied to raise the importance of more meaningful
words. To use tf–idf, a file with normalised IDF scores of words is required. This file should be generated based on a
large number of entries that are similar (or from a similar domain) to those later input to EDAMmap. As an example,
IDF files generated based on all entries of bio.tools (at some point in time) are provided: biotools.idf (stemming has
not been applied to words) and biotools.stemmed.idf (stemming has been applied).

If so wished, the IDF files based on bio.tools content can be generated from scratch instead of using the ones provided.
This will take several hours.

First, all content from bio.tools can be downloaded with:

$ java -jar edammap-util-<version>.jar -biotools-full biotools.json

Next, content for publications, webpages and docs is fetched (-db-fetch is documented in PubFetcher’s documen-
tation at Get content):

7

https://github.com/edamontology/edammap/blob/master/INSTALL.md
http://edamontology.org/page
https://github.com/edamontology/pubfetcher
https://pubfetcher.readthedocs.io/en/stable/output.html#database
https://en.wikipedia.org/wiki/Tf%E2%80%93idf
https://bio.tools/
https://github.com/edamontology/edammap/blob/master/doc/biotools.idf
https://github.com/edamontology/edammap/blob/master/doc/biotools.stemmed.idf
https://pubfetcher.readthedocs.io/en/stable/cli.html#get-content

EDAMmap, Release 1.1.2-SNAPSHOT

$ java -jar edammap-util-<version>.jar -pub-query biotools.json --query-type biotools
→˓-db-fetch db.db --log pub.log
$ java -jar edammap-util-<version>.jar -web-query biotools.json --query-type biotools
→˓-db-fetch db.db --log web.log
$ java -jar edammap-util-<version>.jar -doc-query biotools.json --query-type biotools
→˓-db-fetch db.db --log doc.log

or alternatively, with a single command:

$ java -jar edammap-util-<version>.jar -all-query biotools.json --query-type biotools
→˓-db-fetch db.db --log all.log

Note: Fetching of content could be repeated multiple times in the span of a few days to get more complete content of
publications, webpages and docs, as some absent information could be filled in subsequent fetches, when for example
resources that were temporarily unavailable will be up again (while on the other hand, -db-fetch will not try to
re-fetch content that is already deemed to be final in the database, thus saving time and resources).

And as last step, the wanted IDF files are generated:

$ java -jar edammap-util-<version>.jar -make-idf biotools.json db.db biotools.idf
$ java -jar edammap-util-<version>.jar -make-idf-stemmed biotools.json db.db biotools.
→˓stemmed.idf

Another reason to generated own IDF files might be, that the inputs to be annotated with EDAMmap are from a
different field and not meant for bio.tools. Then, the queries input from biotools.json should be replaced with
the different collection of entries from that different domain.

2.2 Input

An input query fed to EDAMmap can have the following parts: id, name, list of keywords, description, webpage URLs,
documentation URLs, publication IDs, existing EDAM annotations. The name, keywords and description are strings
describing the tool to be annotated. The id can be used as an optional identificator for the tool and (unlike name) its
content will not be fed to the mapping algorithm. Content corresponding to URLs and IDs will need to be fetched by
leveraging the PubFetcher library. Existing manual annotations can be specified to do benchmarking of EDAMmap
or for example to exclude already existing annotations from results.

How query parts are read from an input file depends on the query type of the input file (specified with --type).

For example, using --type biotools means that the input file is a JSON file containing entries adhering to
the biotoolsSchema (as returned by https://bio.tools/api/tool?format=json). The tool name is found from "name",
publication IDs are picked from "publication", existing annotation are found in "topic" and "function",
etc. Other, non-relevant fields in the JSON are ignored.

2.2.1 CSV

For self-generated input, using a generic CSV file should be easier. This can be specified with --type generic
(or it can also be omitted, as it is the default).

The field delimiter character in the CSV file is ,, the character used for escaping values where the field delimiter is
part of the value is " and the character used for escaping quotes inside an already quoted value is also ". Lines are
separated with \n (Unix end-of-line) and empty lines and lines beginning with # are skipped. The maximum number
of characters allowed for any given value is 100000. Within fields, multiple keywords, webpage URLs, documentation

8 Chapter 2. Manual

https://github.com/edamontology/pubfetcher
https://biotoolsschema.readthedocs.io/
https://bio.tools/api/tool?format=json

EDAMmap, Release 1.1.2-SNAPSHOT

URLs, publication IDs and existing annotation can be separated with | (which means this character can’t be used as
part of the values of these query parts).

The first line of the CSV file must be the header line describing the columns, with the following content: id,name,
keywords,description,webpageUrls,docUrls,publicationIds,annotations. But columns,
along with their corresponding header entries, can be omitted, as not all query parts have to be be used for map-
ping. For example, to do simple one input string to EDAM term matching, only the name part could be filled. Or
if only short descriptions are available about tools, only description and name could be filled (filling the name is
mandatory). Also, the order of the fields in the header line can be changed (as long as column data matches with its
header).

An example generic input CSV file example.csv, with only one tool called “g:Profiler”, is the following:

name,keywords,description,webpageUrls,docUrls,publicationIds,annotations
g:Profiler,gene set enrichment analysis|Gene Ontology,"A web server for functional
→˓enrichment analysis, and conversions of gene lists.",https://biit.cs.ut.ee/
→˓gprofiler/,https://biit.cs.ut.ee/gprofiler/help.cgi,17478515|PMC3125778|10.1093/nar/
→˓gkw199,http://edamontology.org/topic_1775|operation_2436|data_3021|http://
→˓edamontology.org/format_1964

Note: Specifying the prefix http://edamontology.org/ is optional for existing annotations.

Note: Only one ID can be specified for one publication, either a PubMed ID, a PubMed Central ID or a DOI (in the
example, 17478515|PMC3125778|10.1093/nar/gkw199 are three different publications).

2.3 Parameters

Mapping can be influenced by various changeable parameters, which on the command line can be specified as
--parameter value. Most of these parameters are documented under EDAMmap API Parameters.

Preprocessing parameters influence the tokenisation of the input. Fetching parameters influence the fetching of publi-
cations, webpages and docs. And Mapping parameters influence the mapping algorithm and outputting of the results
(more about the mapping algorithm can be found in section 3.10 of the thesis).

In addition, there are some parameters that can’t be changed through the API, but can be changed on the command
line. These are the Fetching private parameters (from PubFetcher) and the Processing parameters, documented in the
table below.

2.3. Parameters 9

https://github.com/edamontology/edammap/blob/master/doc/Automatic%20mapping%20of%20free%20texts%20to%20bioinformatics%20ontology%20terms.pdf
https://pubfetcher.readthedocs.io/en/stable/cli.html#fetching-private
https://github.com/edamontology/pubfetcher

EDAMmap, Release 1.1.2-SNAPSHOT

2.3.1 Processing

Pa-
ram-
eter

De-
fault

Description

--fetchingtrue Fetch publications, webpages and docs (corresponding to given publication IDs, webpage URLs
and doc URLs); if false, then only the database is used for getting them (if a database is given
with --db)

--db Use the given database for getting and storing publications, webpages and docs (corresponding to
given publication IDs, webpage URLs and doc URLs); if a database is given, then it is queried first
even if fetching is enabled with --fetching (and fetching is done only if required and possible
for found database entry)

--idf Use the given query IDF file (when stemming is not enabled); if not specified, weighting of queries
with IDF scores will be disabled (when stemming is not enabled)

--idfStemmedUse the given query IDF file (when stemming is enabled); if not specified, weighting of queries
with IDF scores will be disabled (when stemming is enabled)

2.4 Results

The output results will contain the requested matches number (or less, if scores are too low) of best terms (described
by their EDAM URI and label) from the requested branches ordered by score within each branch, output along with
intermediate match scores. Depending on the output type, results can additionally contain extra information about
query part to concept part matches that form the final score and contain also matched parent and child terms, the
supplied query, the used parameters and information about the fetched webpages, docs and publications. Results
can also contain benchmarking measures which might be helpful in evaluating the performance of EDAMmap and
in choosing optimal parameter values (benchmarking results can only make sense if any existing manually added
annotations were supplied with the query).

Note: Mapping to terms from the data and format branches does not work that well currently, therefore results from
these branches are omitted by default.

Results can be output into a JSON file, a directory containing HTML files and/or a plain text file. The content and
structure of the JSON output is documented under the Response section of the EDAMmap API documentation. If the
JSON output is obtained through running EDAMmap on the command-line (instead of querying through the API),
then the type in the JSON output will be "cli" instead of "core" or "full" and the api, txt, html and json fields
will be missing, but otherwise the output structure will be the same as for the "full" API response. The HTML
output will contain the same information as the "full" JSON output, but rendered in a nice way in a web browser
with clickable links to outside resources.

The plain text output will contain minimal information besides the matched terms. After the initial header line labelling
the columns it will contain one line for each matched term with the following tab-separated values:

query_id The id of the query

query_name The name of the tool in the query

edam_branch The EDAM branch the matched term is from (one of topic, operation, data, format)

edam_uri The EDAM URI of the matched term

edam_label The EDAM label of the matched term

edam_obsolete true, if the term is obsolete; false otherwise

10 Chapter 2. Manual

https://pubfetcher.readthedocs.io/en/stable/output.html#content-of-publications
https://pubfetcher.readthedocs.io/en/stable/output.html#content-of-webpages
https://pubfetcher.readthedocs.io/en/stable/output.html#content-of-docs
https://pubfetcher.readthedocs.io/en/stable/output.html#database
https://pubfetcher.readthedocs.io/en/stable/output.html#database
https://pubfetcher.readthedocs.io/en/stable/output.html#content-of-publications
https://pubfetcher.readthedocs.io/en/stable/output.html#content-of-webpages
https://pubfetcher.readthedocs.io/en/stable/output.html#content-of-docs
https://pubfetcher.readthedocs.io/en/stable/fetcher.html#can-fetch

EDAMmap, Release 1.1.2-SNAPSHOT

best_one_query Name of the type of the best matched query part

best_one_concept Name of the type of the EDAM term part the best matched query part matched with

best_one_score If mappingStrategy is “average”, then the match score of best_one_query and best_one_concept will
be stored here. If mappingStrategy is not “average”, then it will have a negative value.

without_path_score If parentWeight and pathWeight are above 0, then the non-path-enriched score will be stored
here. Otherwise it will have a negative value.

score The final score of the match

test tp, if term was matched and also specified as existing annotation in the query; fp, if term was matched, but not
specified as existing annotation in query; fn, if term was not matched, but was specified as existing annotation
in query

In addition to these detailed results, when --type biotools is used to input a bio.tools JSON file (adhering to
biotoolsSchema), then there is a supplementary option (--biotools) to output this bio.tools JSON file with the
matched terms added to it (but without any extra information about the results). All values present in the input JSON
will also be present in the output JSON, except for null and empty value which will be removed. New annotations
from the topic branch will be added to the topic attribute of the output JSON and new annotations from the operation
branch will be added under a new function group object. If requested, then new annotations from the data and format
branches should be added under the "input" and "output" attributes of a function group, however EDAMmap
can’t differentiate between inputs and outputs. Thus, new terms from the data and format branches will be added as
strings (in the form "EDAM URI (label)", separated by " | ") to the note of the last function group object.

2.5 EDAMmap-CLI

EDAMmap can be run as a command-line tool with the input being a JSON or CSV local file or URL resource (with
the file contents described in the Input section) and with the results being output to the specified JSON, HTML and/or
plain text files. The query can consist of many tools and the mapping process will be multi-threaded.

All command-line arguments suppliable to EDAMmap can be seen with:

$ java -jar edammap-cli-<version>.jar -h

The output will be rather long, as it contains all parameters described in the Parameters section. In addition to these
parameters, EDAMmap-CLI accepts arguments described in the following table (entries marked with * are mandatory).

2.5. EDAMmap-CLI 11

https://biotoolsschema.readthedocs.io/
https://biotools.readthedocs.io/en/latest/curators_guide.html#topic
https://biotools.readthedocs.io/en/latest/curators_guide.html#function-group
https://biotools.readthedocs.io/en/latest/curators_guide.html#note-function

EDAMmap, Release 1.1.2-SNAPSHOT

Parame-
ter

Pa-
ram-
eter
args

De-
fault

Description

--edam
or -e *

<file
path>

Path of the EDAM ontology file

--query
or -q *

<file
path
or
URL>

Path or URL of file containing input queries of QueryType --type

--type
or -t

<Query-
Type>

genericSpecifies the type of the query and how to output the results. Possible values:
generic, SEQwiki, msutils, Bioconductor, biotools14, biotools,
server.

--output
or -o

<file
path>

Text file to write results to, one per line. If missing (and HTML report also not
specified), then results will be written to standard output.

--report
or -r

<di-
rec-
tory
path>

Directory to write a HTML report to. In addition to detailed results, it will con-
tain used parameters, metrics, comparisons to manual mapping, extended information
about queries and nice formatting. The specified directory will be created and must
not be an existing directory.

--json
or -j

<file
path>

File to write results to, in JSON format. Will include the same info as the HTML
report.

--biotools
or -b

<file
path>

File to write results to, in bio.tools JSON format, confirming to biotoolsSchema.
Available only for --type biotools, where the input JSON is copied to the
output, but with new annotations found by EDAMmap added to the "topic" and
"function" attributes.

--reportPageSize<pos-
itive
inte-
ger>

100 Number of results in a HTML report page. Setting to 0 will output all results to a
single HTML page.

--reportPaginationSize<pos-
itive
inte-
ger>

11 Number of pagination links visible before/after the current page link in a HTML re-
port page. Setting to 0 will make all pagination links visible.

--threads<pos-
itive
inte-
ger>

4 How many threads to use for mapping (one thread processes one query at a time)

So, for example, to map the example tool (“g:Profiler”) defined in the Input section (in example.csv), the following
command could be run:

$ java -jar edammap-cli-<version>.jar -e EDAM_1.21.owl -q example.csv -r gprofiler --
→˓idfStemmed biotools.stemmed.idf -l gprofiler.log

Contents for webpages, docs and publications described in the query example.csvwill be fetched (but not stored for
potential later reuse, as no database file is specified), the IDF file biotools.stemmed.idf obtained in the Setup
section (where words are stemmed as by default --stemming is true) will be used as an input to the mapping
algorithm and results will be output to the HTML file gprofiler/index.html, with log lines of the whole
process appended to gprofiler.log.

Another example is the mapping of the whole content of bio.tools:

$ java -jar edammap-cli-<version>.jar -e EDAM_1.21.owl -q biotools.json -t biotools -
→˓o results.txt -r results -j results.json --threads 8 --fetching false --db db.db --
→˓idfStemmed biotools.stemmed.idf --branches topic operation data format --matches 6 -
→˓-log biotools.log

(continues on next page)

12 Chapter 2. Manual

https://biotoolsschema.readthedocs.io/
https://pubfetcher.readthedocs.io/en/stable/output.html#content-of-webpages
https://pubfetcher.readthedocs.io/en/stable/output.html#content-of-docs
https://pubfetcher.readthedocs.io/en/stable/output.html#content-of-publications
https://pubfetcher.readthedocs.io/en/stable/fetcher.html
https://pubfetcher.readthedocs.io/en/stable/output.html#database
https://pubfetcher.readthedocs.io/en/stable/output.html#log-file

EDAMmap, Release 1.1.2-SNAPSHOT

(continued from previous page)

The query biotools.json is the whole content of bio.tools as obtained with the -biotools-full command
of EDAMmap-Util. Contents of webpages, docs and publications has been pre-fetched to the database file db.db
(as described under IDF), thus --fetching is disabled. Results will be output as plain text to results.txt, as
HTML files to the directory results and as JSON to results.json. Results will contain up to 6 term matches
from each EDAM branch. As EDAMmap was run on the whole content of bio.tools, then the benchmarking results
can be consulted to assess the performance and as webpages, docs and publications have been stored on disk, then
EDAMmap can easily be re-run while varying the parameters to tune these results.

Note: The measures in the benchmarking results assume, that the annotations in bio.tools are correct, which is not
always the case. The performacne of EDAMmap can still be assumed to be correlated with the benchmarking results,
however care should be taken when looking at individual mapping results.

Instead of specifying the parameters as part of the command line, they could be stored in a configuration file. An initial
configuration file, with all parameters commented out, can be generated with:

$ java -jar edammap-util-<version>.jar -make-options-conf options.conf

In the ensuing file, # should be removed from the front of all mandatory parameters and all parameters whose default
value should be changed. In the configuration file, parameters and parameter values are separated by newline characters
(instead of spaces). Now, EDAMmap can be run as:

$ java -jar edammap-cli-<version>.jar @options.conf

2.6 EDAMmap-Server

EDAMmap can also be run as a web server. A query can then be input with a HTML form in a web application or
posted as JSON to an API. However, in contrast to EDAMmap-CLI, only one query at a time can be submitted this
way.

All command-line arguments suppliable to an EDAMmap server can be seen with:

$ java -jar edammap-server-<version>.jar -h

In addition to Processing and Fetching private parameters, EDAMmap Server accepts arguments described in the
following table (entries marked with * are mandatory).

2.6. EDAMmap-Server 13

https://pubfetcher.readthedocs.io/en/stable/cli.html#fetching-private

EDAMmap, Release 1.1.2-SNAPSHOT

Parameter Param-
eter
args

Default Description

--edam or
-e *

<file
path>

Path of the EDAM ontology file

--txt <boolean>true Output results to a plain text file for queries made through the web
application. The value can be changed in the web application itself.

--json <boolean>false Output results to a JSON file for queries made through the web appli-
cation. The value can be changed in the web application itself.

--baseUri
or -b

<string> http://
localhost:8080

URI where the server will be deployed (as schema://host:port)

--path or
-p

<string> edammap Path where the server will be deployed (only one single path segment
supported)

--httpsProxy Use if we are behind a HTTPS proxy
--files
or -f *

<di-
rectory
path>

An existing directory where the results will be output. It must con-
tain required CSS, JavaScript and font resources pre-generated with
EDAMmap-Util.

--fetchingThreads<pos-
itive
integer>

8 How many threads to create (maximum) for fetching individual
database entries of one query

To setup the server version of EDAMmap, a new directory with required CSS, JavaScript and font resources must be
created:

$ java -jar edammap-util-<version>.jar -make-server-files files

If wanted (i.e. if --db will be used when running the server), an initial empty database for storing fetched webpages,
docs and publications can also be created:

$ java -jar edammap-util-<version>.jar -db-init server.db

EDAMmap-Server can now be run with:

$ java -jar edammap-server-<version>.jar -b http://127.0.0.1:8080 -p edammap -e EDAM_
→˓1.21.owl -f files --fetching true --db server.db --idf biotools.idf --idfStemmed
→˓biotools.stemmed.idf --log serverlogs

The web application can now be accessed locally at http://127.0.0.1:8080/edammap and the API is at http://127.0.0.1:
8080/edammap/api. How to obtain the IDF files biotools.idf and biotools.stemmed.idf is described in
the Setup section. In contrast to the other EDAMmap tools, the server will not log to a single log file, but with -l or
--log a directory can be defined where log files, that are rotated daily, will be stored. The log directory will also
contain daily rotated access logs compatible with Apache’s combined format.

A public instance of EDAMmap-Server is accessible at https://biit.cs.ut.ee/edammap, with the API at https://biit.cs.ut.
ee/edammap/api.

2.7 EDAMmap-Util

EDAMmap includes a utility program to manage and fill database files with fetched content or otherwise setup pre-
requisites for other tools, etc. Many of its operations have already been used above, but this section is still included
for completeness.

All command-line arguments suppliable to the utility program can be seen with:

14 Chapter 2. Manual

https://pubfetcher.readthedocs.io/en/stable/output.html#database
https://pubfetcher.readthedocs.io/en/stable/fetcher.html
https://pubfetcher.readthedocs.io/en/stable/output.html#content-of-webpages
https://pubfetcher.readthedocs.io/en/stable/output.html#content-of-docs
https://pubfetcher.readthedocs.io/en/stable/output.html#content-of-publications
http://127.0.0.1:8080/edammap
http://127.0.0.1:8080/edammap/api
http://127.0.0.1:8080/edammap/api
https://pubfetcher.readthedocs.io/en/stable/output.html#log-file
https://biit.cs.ut.ee/edammap
https://biit.cs.ut.ee/edammap/api
https://biit.cs.ut.ee/edammap/api

EDAMmap, Release 1.1.2-SNAPSHOT

$ java -jar edammap-util-<version>.jar -h

The list of options is very long, as EDAMmap-Util extends the CLI of PubFetcher, which means that the utility pro-
gram can run all the same operations as PubFetcher-CLI can. In addition to functionality inherited from PubFetcher-
CLI, operations described in the following table can be executed.

2.7. EDAMmap-Util 15

https://pubfetcher.readthedocs.io/en/stable/cli.html

EDAMmap, Release 1.1.2-SNAPSHOT

Pa-
ram-
e-
ter

Pa-
ram-
eter
args

De-
fault

Description

-pub-query<file
path/URL>
<file
path/URL>
. . .

Load all publication IDs found in the specified files of QueryType specified with
--query-type. A file can either be local or a URL, in which case –timeout and –user-
Agent can be used to change parameters used to fetch it.

-web-query<file
path/URL>
<file
path/URL>
. . .

Load all webpage URLs found in the specified files of QueryType specified with
--query-type. A file can either be local or a URL, in which case –timeout and –user-
Agent can be used to change parameters used to fetch it.

-doc-query<file
path/URL>
<file
path/URL>
. . .

Load all doc URLs found in the specified files of QueryType specified with --query-type.
A file can either be local or a URL, in which case –timeout and –userAgent can be used to
change parameters used to fetch it.

-all-query<file
path/URL>
<file
path/URL>
. . .

Load all publication IDs, webpage URLs and doc URLs found in the specified files of Query-
Type specified with --query-type. A file can either be local or a URL, in which case
–timeout and –userAgent can be used to change parameters used to fetch it.

--query-type<Query-
Type>

genericSpecifies the type of the query files loaded using -pub-query, -web-query,
-doc-query and -all-query. Possible values: generic, SEQwiki, msutils,
Bioconductor, biotools14, biotools, server.

-make-idf<query
path/URL>
<database
path>
<IDF
path>

Make the specified IDF file from tokens parsed from queries of type --make-idf-type
loaded from the specified query file. The tokens are not stemmed. Contents for pub-
lication IDs, webpage URLs and doc URLs found in queries are loaded from the spec-
ified database file. If --make-idf-webpages-docs is true (the default), then to-
kens from webpage and doc content will also be used to make the IDF file and if
--make-idf-fulltext is true (the default), then tokens from publication fulltext will
also be used to make the IDF file. If the specified query file is a URL, then --timeout
and --userAgent can be used to change parameters used to fetch it. The fetching
parameters --titleMinLength, --keywordsMinSize, --minedTermsMinSize,
--abstractMinLength, --fulltextMinLength and --webpageMinLength
can be used to change the minimum length of a usable corresponding part (parts below that
length will not be tokenised, thus will not used to make the specified IDF file).

-make-idf-nodb<query
path/URL>
<IDF
path>

Make the specified IDF file from tokens parsed from queries of type --make-idf-type
loaded from the specified query file. The tokens are not stemmed. Contents for publication
IDs, webpage URLs and doc URLs found in queries are are not loaded and thus are not used
to make the specified IDF file. If the specified query file is a URL, then --timeout and
--userAgent can be used to change parameters used to fetch it.

-make-idf-stemmed<query
path/URL>
<database
path>
<IDF
path>

Make the specified IDF file from tokens parsed from queries of type --make-idf-type
loaded from the specified query file. The tokens are stemmed. Contents for publica-
tion IDs, webpage URLs and doc URLs found in queries are loaded from the speci-
fied database file. If --make-idf-webpages-docs is true (the default), then to-
kens from webpage and doc content will also be used to make the IDF file and if
--make-idf-fulltext is true (the default), then tokens from publication fulltext will
also be used to make the IDF file. If the specified query file is a URL, then --timeout
and --userAgent can be used to change parameters used to fetch it. The fetching
parameters --titleMinLength, --keywordsMinSize, --minedTermsMinSize,
--abstractMinLength, --fulltextMinLength and --webpageMinLength
can be used to change the minimum length of a usable corresponding part (parts below that
length will not be tokenised, thus will not used to make the specified IDF file).

-make-idf-stemmed-nodb<query
path/URL>
<IDF
path>

Make the specified IDF file from tokens parsed from queries of type --make-idf-type
loaded from the specified query file. The tokens are stemmed. Contents for publication IDs,
webpage URLs and doc URLs found in queries are are not loaded and thus are not used
to make the specified IDF file. If the specified query file is a URL, then --timeout and
--userAgent can be used to change parameters used to fetch it.

--make-idf-type<Query-
Type>

biotoolsThe QueryType of the query file loaded to make the IDF file with -make-idf,
-make-idf-nodb, -make-idf-stemmed or -make-idf-stemmed-nodb. Pos-
sible values: generic, SEQwiki, msutils, Bioconductor, biotools14,
biotools, server.

--make-idf-webpages-docs<boolean>true Whether tokens from webpage and doc content will also be used to make the IDF file with
-make-idf or -make-idf-stemmed

--make-idf-fulltext<boolean>true Whether tokens from publication fulltext will also be used to make the IDF file with
-make-idf or -make-idf-stemmed

-print-idf-top<IDF
path>
<pos-
itive
in-
te-
ger
n>

Print top n most frequent terms from the specified IDF file along with their counts (that show
in how many documents a term occurs)

-print-idf<IDF
path>
<term>
<term>
. . .

Print given terms along with their IDF scores (between 0 and 1) read from the given IDF file.
Given terms are preprocessed, but stemming is not done, thus terms in the given IDF file must
not be stemmed either.

-print-idf-stemmed<IDF
path>
<term>
<term>
. . .

Print given terms along with their IDF scores (between 0 and 1) read from the given IDF file.
Given terms are preprocessed, with stemming being done, thus terms in the given IDF file
must also be stemmed.

-biotools-full<file
path>

Fetch all content (by following "next" until the last page) from https://bio.tools/api/tool to
the specified JSON file. Fetching parameters –timeout and –userAgent can be used.

-biotools-dev-full<file
path>

Fetch all content (by following "next" until the last page) from https://dev.bio.tools/api/tool
to the specified JSON file. Fetching parameters –timeout and –userAgent can be used.

-make-server-files<di-
rec-
tory
path>

Create new directory with CSS, JavaScript and font files required by EDAMmap-Server. The
version of EDAMmap-Server the files are created for must match the version of EDAMmap-
Util running the command.

-make-options-conf<file
path>

Create new options configuration file

16 Chapter 2. Manual

https://pubfetcher.readthedocs.io/en/stable/output.html#ids-of-publications
https://pubfetcher.readthedocs.io/en/stable/cli.html#timeout
https://pubfetcher.readthedocs.io/en/stable/cli.html#useragent
https://pubfetcher.readthedocs.io/en/stable/cli.html#useragent
https://pubfetcher.readthedocs.io/en/stable/output.html#urls-of-webpages
https://pubfetcher.readthedocs.io/en/stable/cli.html#timeout
https://pubfetcher.readthedocs.io/en/stable/cli.html#useragent
https://pubfetcher.readthedocs.io/en/stable/cli.html#useragent
https://pubfetcher.readthedocs.io/en/stable/output.html#urls-of-docs
https://pubfetcher.readthedocs.io/en/stable/cli.html#timeout
https://pubfetcher.readthedocs.io/en/stable/cli.html#useragent
https://pubfetcher.readthedocs.io/en/stable/output.html#ids-of-publications
https://pubfetcher.readthedocs.io/en/stable/output.html#urls-of-webpages
https://pubfetcher.readthedocs.io/en/stable/output.html#urls-of-docs
https://pubfetcher.readthedocs.io/en/stable/cli.html#timeout
https://pubfetcher.readthedocs.io/en/stable/cli.html#useragent
https://bio.tools/api/tool
https://pubfetcher.readthedocs.io/en/stable/cli.html#timeout
https://pubfetcher.readthedocs.io/en/stable/cli.html#useragent
https://dev.bio.tools/api/tool
https://pubfetcher.readthedocs.io/en/stable/cli.html#timeout
https://pubfetcher.readthedocs.io/en/stable/cli.html#useragent

EDAMmap, Release 1.1.2-SNAPSHOT

Note: -pub-query, -web-query, -doc-query, -all-query and --query-type are not standalone
operations, but are meant to be used as part of the Pipeline of operations inherited from PubFetcher, allowing to inject
IDs read from formats not supported by PubFetcher itself.

2.7. EDAMmap-Util 17

https://pubfetcher.readthedocs.io/en/stable/cli.html#pipeline-of-operations

EDAMmap, Release 1.1.2-SNAPSHOT

18 Chapter 2. Manual

CHAPTER 3

API

The EDAMmap API is consumed by sending a JSON request with HTTP POST. The main endpoint is /api, which on
the public instance translates to https://biit.cs.ut.ee/edammap/api.

JSON numbers and booleans are converted to strings internally. JSON objects are ignored (except under bio.tools
input), meaning there is no hierarchy in the request JSON structure.

3.1 /api

The main endpoint is used for performing one mapping. The key-value pairs in the request JSON fall under two
categories: query data and parameters.

3.1.1 Query data

The query data to be mapped can be supplied in two different ways: as strings or arrays of strings under field names
mirroring the usual EDAMmap input names or as a bio.tools input JSON object (like a bio.tools entry in JSON format).
In case data is specified using both ways, only data under the bio.tools input is used.

3.1.1.1 EDAMmap input

The following data can be given, with only the “name” being mandatory.

19

https://biit.cs.ut.ee/edammap/api

EDAMmap, Release 1.1.2-SNAPSHOT

Key Type Description
name string Name of tool or service
key-
words

array of
strings

Keywords, tags, etc

de-
scrip-
tion

string Short description of tool or service

web-
pageUrls

array of
strings

URLs of homepage, etc

docUrlsarray of
strings

URLs of documentations

pub-
lica-
tion-
Ids

array of
strings/objects

PMID/PMCID/DOI of journal article
Note: an article ID can be specified as a string "<PMID>\t<PMCID>\t<DOI>" or as an
object (the only place besides bio.tools input where a JSON object is not ignored), wherein
keys "pmid", "pmcid", "doi" can be used

an-
no-
ta-
tions

array of
strings

Existing annotations from EDAM

3.1.1.2 bio.tools input

Under the field name “tool”, a JSON object adhering to biotoolsSchema can be specified. All values possible in
bio.tools can be specified, but only values relevant to EDAMmap will be used. A few attributes are mandatory: name,
description and homepage. The input will be mirrored under tool in the response, but with found EDAM terms added
to it.

3.1.2 Parameters

3.1.2.1 Main

Parame-
ter

Default Description

version "1" API version. Currently, only one possible value: "1".

type "core" Detail level of the response. Possible values: "core", "full".

txt false Also output results to plain text file. The location of the created file can be read from the
response.

html false Also output results to HTML file. The location of the created file can be read from the
response.

20 Chapter 3. API

https://biotoolsschema.readthedocs.io/
https://biotools.readthedocs.io/en/latest/curators_guide.html#name-tool
https://biotools.readthedocs.io/en/latest/curators_guide.html#description
https://biotools.readthedocs.io/en/latest/curators_guide.html#homepage

EDAMmap, Release 1.1.2-SNAPSHOT

3.1.2.2 Preprocessing

Pa-
ram-
eter

De-
fault

Min Description

num-
bers

true Include/exclude freestanding numbers (i.e., that are not part of a word) in pre-processing

stop-
words

"lucene" Do stopwords removal as part of pre-processing, using the chosen stopwords list. Possible
values: "off", "corenlp", "lucene", "mallet", "smart", "snowball".

stem-
ming

true Do stemming as part of pre-processing

min-
Length

1 0 When all pre-processing steps are done, tokens with length less to this length are removed

3.1.2.3 Fetching

The fetching parameters are implemented in PubFetcher and thus are described in its documentation: Fetching param-
eters.

3.1.2.4 Mapping

Param-
eter

Default Min Max Description

branches
["topic",

"operation"]

Branches to include. Can choose multiple at once from possible values:
"topic", "operation", "data", "format".

matches
5 0 Number of best matches per branch to output. Output amount can be

less than requested if not enough match final scores fulfill score limits
requirement.

obsolete false Include matched obsolete concepts

re-
placeOb-
solete

true Replace matched obsolete concepts with their best matched replacement
defined in EDAM (with “replacedBy” or “consider”)

obsolete-
Penalty

0.5 0.
0

1.
0

The fraction of the final score that included or replaced obsolete concepts
will get

doneAn-
notations

true Suggest concepts already used for annotating query. Parents and
children of these concepts are not suggested in any case (unless
inferiorParentsChildren is set to true).

inferi-
orPar-
entsChil-
dren

false Include parents and children of a better matched concept in suggestion
results

3.1. /api 21

https://github.com/edamontology/pubfetcher
https://pubfetcher.readthedocs.io/en/stable/cli.html#fetching
https://pubfetcher.readthedocs.io/en/stable/cli.html#fetching

EDAMmap, Release 1.1.2-SNAPSHOT

Mapping algorithm

Pa-
ram-
eter

De-
fault

Min Max Description

com-
pound-
Words

1 0 Try to match words that have accidentally been made compound (given number is
maximum number of words in an accidental compound minus one). Not done for
tokens from fulltext, doc and webpage. Set to 0 to disable (for a slight speed increase
with only slight changes to the results).

mis-
match-
Multi-
plier

2.
0

0.
0

Multiplier for score decrease caused by mismatch

match-
Mini-
mum

1.
0

0.
0

1.
0

Minimum score allowed for approximate match. Not done for tokens from fulltext,
doc and webpage. Set to 1 to disable approximate matching.

posi-
tionOffBy1

0.
35

0.
0

1.
0

Multiplier of a position score component for the case when a word is inserted be-
tween matched words or matched words are switched

posi-
tionOffBy2

0.
05

0.
0

1.
0

Multiplier of a position score component for the case when two words are inserted
between matched words or matched words are switched with an additional word
between them

posi-
tion-
Match-
Scal-
ing

0.
5

0.
0

Set to 0 to not have match score of neighbor influence position score. Setting to 1
means linear influence.

posi-
tion-
Loss

0.
4

0.
0

1.
0

Maximum loss caused by wrong positions of matched words

scoreScal-
ing

0.
2

0.
0

Score is scaled before applying multiplier and weighting with other direction match.
Setting to 0 or 1 means no scaling.

con-
ceptWeight

1.
0

0.
0

Weight of matching a concept (with a query). Set to 0 to disable matching of con-
cepts.

query-
Weight

1.
0

0.
0

Weight of matching a query (with a concept). Set to 0 to disable matching of queries.

map-
pingStrat-
egy

"average" Choose the best or take the average of query parts matches. Possible value: "best",
"average".

paren-
tWeight

0.
5

0.
0

Weight of concept’s parent when computing path enrichment. Weight of grand-
parent is parentWeight times parentWeight, etc. Set to 0 to disable path
enrichment.

path-
Weight

0.
7

0.
0

Weight of path enrichment. Weight of concept is 1. Set to 0 to disable path enrich-
ment.

22 Chapter 3. API

https://pubfetcher.readthedocs.io/en/stable/fetcher.html#fulltext
https://pubfetcher.readthedocs.io/en/stable/output.html#content-of-docs
https://pubfetcher.readthedocs.io/en/stable/output.html#content-of-webpages
https://pubfetcher.readthedocs.io/en/stable/fetcher.html#fulltext
https://pubfetcher.readthedocs.io/en/stable/output.html#content-of-docs
https://pubfetcher.readthedocs.io/en/stable/output.html#content-of-webpages

EDAMmap, Release 1.1.2-SNAPSHOT

IDF

Parameter Default Min Description
conceptIdfScaling 0.5 0.0 Set to 0 to disable concept IDF. Setting to 1 means linear IDF weighting.
queryIdfScaling 0.5 0.0 Set to 0 to disable query IDF. Setting to 1 means linear IDF weighting.
labelSynonymsIdf false IDF weighting for concept label and synonyms
nameKeywordsIdf true IDF weighting for query name and keywords
descriptionIdf true IDF weighting for query description
titleKeywordsIdf true IDF weighting for publication title and keywords
abstractIdf true IDF weighting for publication abstract

Concept multipliers

Parameter De-
fault

Min Max Description

labelMultiplier 1.
0

0.
0

1.
0

Score multiplier for matching a concept label. Set to 0 to disable match-
ing of labels.

exactSynonym-
Multiplier

1.
0

0.
0

1.
0

Score multiplier for matching a concept exact synonym. Set to 0 to
disable matching of exact synonyms.

narrowBroadSyn-
onymMultiplier

1.
0

0.
0

1.
0

Score multiplier for matching a concept narrow or broad synonym. Set
to 0 to disable matching of narrow and broad synonyms.

definitionMulti-
plier

1.
0

0.
0

1.
0

Score multiplier for matching a concept definition. Set to 0 to disable
matching of definitions.

commentMulti-
plier

1.
0

0.
0

1.
0

Score multiplier for matching a concept comment. Set to 0 to disable
matching of comments.

3.1. /api 23

EDAMmap, Release 1.1.2-SNAPSHOT

Query normalisers

Parameter De-
fault

Min Max Description

nameNormaliser 0.
81

0.
0

1.
0

Score normaliser for matching a query name. Set to 0 to disable
matching of names.

keywordNormaliser 0.
77

0.
0

1.
0

Score normaliser for matching a query keyword. Set to 0 to disable
matching of keywords.

descriptionNor-
maliser

0.
92

0.
0

1.
0

Score normaliser for matching a query description. Set to 0 to disable
matching of descriptions.

publicationTitleNor-
maliser

0.
91

0.
0

1.
0

Score normaliser for matching a publication title. Set to 0 to disable
matching of titles.

publicationKey-
wordNormaliser

0.
77

0.
0

1.
0

Score normaliser for matching a publication keyword. Set to 0 to
disable matching of keywords.

publicationMesh-
Normaliser

0.
75

0.
0

1.
0

Score normaliser for matching a publication MeSH term. Set to 0 to
disable matching of MeSH terms.

publication-
MinedTermNor-
maliser

1.0 0.
0

1.
0

Score normaliser for matching a publication mined term (EFO, GO).
Set to 0 to disable matching of mined terms.

publicationAbstract-
Normaliser

0.
985

0.
0

1.
0

Score normaliser for matching a publication abstract. Set to 0 to
disable matching of abstracts.

publicationFull-
textNormaliser

1.0 0.
0

1.
0

Score normaliser for matching a publication fulltext. Set to 0 to dis-
able matching of fulltexts.

docNormaliser 1.0 0.
0

1.
0

Score normaliser for matching a query doc. Set to 0 to disable match-
ing of docs.

webpageNormaliser 1.0 0.
0

1.
0

Score normaliser for matching a query webpage. Set to 0 to disable
matching of webpages.

24 Chapter 3. API

https://pubfetcher.readthedocs.io/en/stable/fetcher.html#title
https://pubfetcher.readthedocs.io/en/stable/fetcher.html#keywords
https://pubfetcher.readthedocs.io/en/stable/fetcher.html#mesh
https://pubfetcher.readthedocs.io/en/stable/fetcher.html#efo
https://pubfetcher.readthedocs.io/en/stable/fetcher.html#go
https://pubfetcher.readthedocs.io/en/stable/fetcher.html#theabstract
https://pubfetcher.readthedocs.io/en/stable/fetcher.html#fulltext
https://pubfetcher.readthedocs.io/en/stable/output.html#content-of-docs
https://pubfetcher.readthedocs.io/en/stable/output.html#content-of-webpages

EDAMmap, Release 1.1.2-SNAPSHOT

Query weights

Parameter De-
fault

Min Description

averageScaling 10.
0

0.
0

Scaling for the average strategy

nameWeight 1.0 0.
0

Weight of query name in average strategy. Set to 0 to disable matching of
names in average strategy.

keywordWeight 1.0 0.
0

Weight of query keyword in average strategy. Set to 0 to disable matching of
keywords in average strategy.

description-
Weight

1.0 0.
0

Weight of query description in average strategy. Set to 0 to disable matching
of descriptions in average strategy.

publicationTi-
tleWeight

0.
25

0.
0

Weight of publication title in average strategy. Set to 0 to disable matching of
titles in average strategy.

publicationKey-
wordWeight

0.
75

0.
0

Weight of publication keyword in average strategy. Set to 0 to disable matching
of keywords in average strategy.

publicationMesh-
Weight

0.
25

0.
0

Weight of publication MeSH term in average strategy. Set to 0 to disable
matching of MeSH terms in average strategy.

publication-
MinedTermWeight

0.
25

0.
0

Weight of publication mined term (EFO, GO) in average strategy. Set to 0 to
disable matching of mined terms in average strategy.

publicationAb-
stractWeight

0.
75

0.
0

Weight of publication abstract in average strategy. Set to 0 to disable matching
of abstracts in average strategy.

publicationFull-
textWeight

0.5 0.
0

Weight of publication fulltext in average strategy. Set to 0 to disable matching
of fulltexts in average strategy.

docWeight 0.5 0.
0

Weight of query doc in average strategy. Set to 0 to disable matching of docs
in average strategy.

webpageWeight 0.5 0.
0

Weight of query webpage in average strategy. Set to 0 to disable matching of
webpages in average strategy.

3.1. /api 25

https://pubfetcher.readthedocs.io/en/stable/fetcher.html#title
https://pubfetcher.readthedocs.io/en/stable/fetcher.html#keywords
https://pubfetcher.readthedocs.io/en/stable/fetcher.html#mesh
https://pubfetcher.readthedocs.io/en/stable/fetcher.html#efo
https://pubfetcher.readthedocs.io/en/stable/fetcher.html#go
https://pubfetcher.readthedocs.io/en/stable/fetcher.html#theabstract
https://pubfetcher.readthedocs.io/en/stable/fetcher.html#fulltext
https://pubfetcher.readthedocs.io/en/stable/output.html#content-of-docs
https://pubfetcher.readthedocs.io/en/stable/output.html#content-of-webpages

EDAMmap, Release 1.1.2-SNAPSHOT

Score limits

Pa-
ram-
eter

De-
fault

Min Max Description

good-
Score-
Topic

0.
63

0.
0

1.
0

Final scores over this are considered good (in topic branch)

good-
Score-
Op-
era-
tion

0.
63

0.
0

1.
0

Final scores over this are considered good (in operation branch)

good-
Score-
Data

0.
63

0.
0

1.
0

Final scores over this are considered good (in data branch)

good-
Score-
For-
mat

0.
63

0.
0

1.
0

Final scores over this are considered good (in format branch)

bad-
Score-
Topic

0.
57

0.
0

1.
0

Final scores under this are considered bad (in topic branch)

bad-
Score-
Op-
era-
tion

0.
57

0.
0

1.
0

Final scores under this are considered bad (in operation branch)

bad-
Score-
Data

0.
57

0.
0

1.
0

Final scores under this are considered bad (in data branch)

bad-
Score-
For-
mat

0.
57

0.
0

1.
0

Final scores under this are considered bad (in format branch)

out-
put-
Good-
Scores

true Output matches with good scores

out-
putMedi-
um-
Scores

true Output matches with medium scores

out-
put-
Bad-
Scores

false Output matches with bad scores

pass-
able-
Bad-
Scor-
eIn-
ter-
val

0.
04

0.
0

1.
0

Defines the passable bad scores (the best bad scores) as scores falling inside a score
interval of given length, where the upper bound is fixed to the bad score limit

pass-
able-
Bad-
ScoresIn-
TopN

3 0 If a match with passable bad score would be among the top given number of matches,
then it is included among the suggested matches (note that matches with any bad score
are always included if outputBadScores is true)

top-
ScorePartOut-
lier

42.
0

0.
0

If mappingStrategy average is used, then each non-disabled and non-empty query
part will have a corresponding score part. If the score of the top score part is more
than the given number of times larger than the score of the next largest score part, then
the entire match will be discarded. Only done in topic and operation branches and
only when there are at least two score parts and only if the publication fulltext, doc or
webpage query part is the top score part. Set to a value less than 1 to disable in all
cases.

26 Chapter 3. API

https://pubfetcher.readthedocs.io/en/stable/fetcher.html#fulltext
https://pubfetcher.readthedocs.io/en/stable/output.html#content-of-docs
https://pubfetcher.readthedocs.io/en/stable/output.html#content-of-webpages

EDAMmap, Release 1.1.2-SNAPSHOT

3.1.3 Response

The response output can contain more or less information, depending on the specified type. The section of most
interest is probably results in core.

3.1.3.1 core

success true (if false, then the JSON output of Error handling applies instead of the one below)

version "1"

type "core"

api URL of endpoint where request was sent

txt Location of plain text results file (or null if not created)

html Location of HTML results directory (or null if not created)

json Location of JSON results file

generator Information about the application that generated the response

name Name of the application

url Homepage of the application

version Version of the application

time

start Start time of mapping as UNIX time (in milliseconds)

startHuman Start time of mapping as ISO 8601 combined date and time

stop Stop time of mapping as UNIX time (in milliseconds)

stopHuman Stop time of mapping as ISO 8601 combined date and time

duration Duration of mapping in seconds

mapping

query

id Unique ID assigned to the query (and by extension, to this response)

name Name of tool or service (as specified in query data, null if not specified)

keywords Array of strings representing keywords, tags, etc (as specified in query data, null if not
specified)

description Short description of tool or service (as specified in query data, null if not specified)

webpageUrls Array of strings representing URLs of homepage, etc (as specified in query data, null if
not specified)

docUrls Array of strings representing URLs of documentations (as specified in query data, null if not
specified)

publicationIds Array of objects representing IDs of journal articles (as specified in query data, null if
not specified)

pmid PMID of article

pmcid PMCID of article

3.1. /api 27

https://en.wikipedia.org/wiki/Unix_time
https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/Unix_time
https://en.wikipedia.org/wiki/ISO_8601

EDAMmap, Release 1.1.2-SNAPSHOT

doi DOI of article

annotations Array of EDAM URI strings representing existing annotations from EDAM (as specified in
query data, null if not specified)

results

topic Array of objects representing a matched term from the topic branch for the given query, ordered by
score. If no results in topic branch, then empty array. If results in topic branch were not asked for in
mapping parameters, then null.

edamUri EDAM URI of the matched term

edamUriReplaced If replaceObsolete is true and this is a concept replacing a matched obsolete
concept, then this contains the EDAM URI of that obsolete concept (that is replaced with the
concept specified in edamUri)

label EDAM label of the matched term in edamUri

obsolete true, if the term in edamUri is obsolete; false otherwise

childOf Array of objects that are parents of the current matched term in edamUri and that test "fp".
Absent if there are no such parents.

edamUri EDAM URI of a parent described above

label EDAM label of such parent

childOfAnnotation Array of objects that are parents of the current matched term in edamUri and
that test "tp". Same structure as in childOf .

childOfExcludedAnnotation Array of objects that are parents of the current matched term in
edamUri and that test "fn". Same structure as in childOf .

parentOf Array of objects that are children of the current matched term in edamUri and that test
"fp". Same structure as in childOf .

parentOfAnnotation Array of objects that are children of the current matched term in edamUri and
that test "tp". Same structure as in childOf .

parentOfExcludedAnnotation Array of objects that are children of the current matched term in
edamUri and that test "fn". Same structure as in childOf .

bestOneQuery Best matched query part. Basis for bestOneScore calculation and score class deter-
mination using Score limits parameters. Basis for final score calculation if mappingStrategy is
"best". Otherwise (if mappingStrategy is "average"), all query parts will be used for cal-
culating final score (use type "full" to see these partial scores). If replaceObsolete is true
and this is a concept replacing a matched obsolete concept, then will contain match information
of the obsolete concept specified in edamUriReplaced and not the actually suggested concept in
edamUri.

type Name of the type of the query part

url URL of best matched webpage/doc/publication. Absent, if type is not webpage, doc or some
publication type.

value Value of best matched keyword or publication keyword. Absent, if type is not keyword or
some publication keyword type.

bestOneConcept Term part the best matched query part (bestOneQuery) matched with

type Name of the type of the term part

value Content of the term part. Absent, if type is "none".

28 Chapter 3. API

EDAMmap, Release 1.1.2-SNAPSHOT

score

class One of "good", "medium", "bad". Calculated based on Score limits parameters and
the match score between bestOneQuery and bestOneConcept.

bestOneScore If mappingStrategy is "average", then the match score between bestOneQuery
and bestOneConcept will be stored here. If mappingStrategy is not "average", then will
have negative value.

withoutPathScore If parentWeight and pathWeight are above 0, then the non path enriched score
will be stored here. Otherwise will have negative value.

score Final score of the match (to edamUriReplaced, if it exists, or to edamUri otherwise)

test "tp", if term was matched and also specified as existing annotation in the query; "fp", if term
was matched, but not specified as existing annotation in query; "fn", if term was not matched,
but was specified as existing annotation in query

operation Same structure as in topic, but for terms matched from the operation branch

data Same structure as in topic, but for terms matched from the data branch

format Same structure as in topic, but for terms matched from the format branch

args The Parameters

mainArgs Main parameters

edam Filename of the used EDAM ontology OWL file

txt true, if output of plain text results was requested; false otherwise

html true, if output of HTML results was requested; false otherwise

json Always true

processorArgs Processing parameters

fetching Always true

db Name of the used database file

idf Name of the used IDF file

idfStemmed Name of the used stemmed IDF file

preProcessorArgs Preprocessing parameters

fetcherArgs Fetching parameters (implemented in PubFetcher)

mapperArgs Mapping parameters

algorithmArgs Mapping algorithm parameters

idfArgs IDF parameters

multiplierArgs Concept multipliers parameters

normaliserArgs Query normalisers parameters

weightArgs Query weights parameters

scoreArgs Score limits parameters

tool Present, if query data was supplied as bio.tools input. The structure and content of this object is the same
as in the object supplied as part of the query, except that null and empty values are removed. In addition,
results from the topic branch are added to the topic attribute and results from the operation branch are added
under a new function group object. Results from the data and format branches should be added under the

3.1. /api 29

https://pubfetcher.readthedocs.io/en/stable/output.html#database
https://github.com/edamontology/pubfetcher
https://biotools.readthedocs.io/en/latest/curators_guide.html#topic
https://biotools.readthedocs.io/en/latest/curators_guide.html#function-group

EDAMmap, Release 1.1.2-SNAPSHOT

"input" and "output" attributes of a function group, however EDAMmap can’t differentiate between inputs
and outputs. Thus, new terms from the data and format branches will be added as strings (in the form "EDAM
URI (label)", separated by " | ") to the note of the last function group object.

3.1.3.2 full

The type "full" includes everything from core, plus the following:

mapping

queryFetched

webpages Array of metadata objects corresponding to webpageUrls in query. Webpages are implemented
in PubFetcher and thus are described in its documentation: Content of webpages. The structure of
webpages here will be the same as described in PubFetcher, except for content which will be missing.
The values of startUrl of webpages will be the URLs given in webpageUrls in query.

docs Array of metadata objects corresponding to docUrls in query. Structure of objects same as in web-
pages.

publications Array of metadata objects corresponding to publicationIds in query. Publications are im-
plemented in PubFetcher and thus are described in its documentation: Content of publications. The
structure of publications here will be the same as described in PubFetcher, except for fulltext which
will be missing.

results

topic/operation/data/format Array of objects defined in topic, i.e. the same content as in core, plus the
field parts defined below.

parts Array of objects representing scores from each query part that are used in calculating the final
score (using weights from Query weights parameters), in case mappingStrategy is "average".
Absent, if mappingStrategy is not "average".

queryMatch

type Name of the type of the query part

url URL of best matched webpage/doc/publication. Absent, if type is not webpage, doc or
some publication type.

value Value of best matched keyword or publication keyword. Absent, if type is not keyword
or some publication keyword type.

score Intermediate score of matching to query part from all concept term parts

conceptMatch

type Name of the type of the term part

value Content of the term part. Absent, if type is "definition", "comment" or "none".

score Intermediate score of matching to concept term part from query part

score Score of the part

counts

conceptsSize Total number of concepts in the used EDAM ontology

topicSize Number of concepts in the topic branch

operationSize Number of concepts in the operation branch

dataSize Number of concepts in the data branch

30 Chapter 3. API

https://biotools.readthedocs.io/en/latest/curators_guide.html#note-function
https://github.com/edamontology/pubfetcher
https://pubfetcher.readthedocs.io/en/stable/output.html#content-of-webpages
https://pubfetcher.readthedocs.io/en/stable/output.html#webpage-content
https://pubfetcher.readthedocs.io/en/stable/output.html#starturl
https://github.com/edamontology/pubfetcher
https://pubfetcher.readthedocs.io/en/stable/output.html#content-of-publications
https://pubfetcher.readthedocs.io/en/stable/fetcher.html#fulltext

EDAMmap, Release 1.1.2-SNAPSHOT

formatSize Number of concepts in the format branch

queriesSize Number of queries. Always 1. Can be bigger in output of EDAMmap-CLI.

resultsSize Number of results. Always 1. Can be bigger in output of EDAMmap-CLI.

tp

topic Number of matched terms from the topic branch that test "tp"

operation Number of matched terms from the operation branch that test "tp"

data Number of matched terms from the data branch that test "tp"

format Number of matched terms from the format branch that test "tp"

total Total number of matched terms that test "tp"

fp Same structure as in tp, but for matched terms that test "fp"

fn Same structure as in tp, but for matched terms that test "fn"

measures Measures of EDAMmap performance against existing annotations provided in query. Does not make much
sense in case of one query-results pair (if queriesSize and resultsSize are 1), but included for completeness.

precision The precision

topic Precision in the topic branch

operation Precision in the operation branch

data Precision in the data branch

format Precision in the format branch

total Precision over all branches

recall Recall. Same structure as in precision.

f1 F1 score. Same structure as in precision.

f2 F2 score. Same structure as in precision.

Jaccard Jaccard index. Same structure as in precision.

AveP Average precision. Same structure as in precision.

RP R-precision. Same structure as in precision.

DCG Discounted cumulative gain. Same structure as in precision.

DCGa DCG (alternative). Same structure as in precision.

3.1.4 Examples

One way to test the API is to send JSON data using curl. For example, for sending the input:

{
"name": "aTool"

}

issue the command:

$ curl -H "Content-Type: application/json" -X POST -d '{"name":"aTool"}' https://biit.
→˓cs.ut.ee/edammap/api

3.1. /api 31

https://en.wikipedia.org/wiki/Precision_and_recall#Precision
https://en.wikipedia.org/wiki/Precision_and_recall#Recall
https://en.wikipedia.org/wiki/F1_score
https://en.wikipedia.org/wiki/F1_score
https://en.wikipedia.org/wiki/Jaccard_index
https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Average_precision
https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#R-Precision
https://en.wikipedia.org/wiki/Discounted_cumulative_gain
https://en.wikipedia.org/wiki/Discounted_cumulative_gain

EDAMmap, Release 1.1.2-SNAPSHOT

In the output, no results can be seen:

"results" : {
"topic" : [],
"operation" : [],
"data" : null,
"format" : null

}

Which is not surprising, given only the tool name was supplied (“aTool”), which is too little for EDAMmap to work
with.

A more meaningful input might look like this:

{
"name": "g:Profiler",
"keywords": ["gene set enrichment analysis", "Gene Ontology"],
"description": "A web server for functional enrichment analysis and conversions of

→˓gene lists.",
"webpageUrls": ["https://biit.cs.ut.ee/gprofiler/"],
"docUrls": ["https://biit.cs.ut.ee/gprofiler/help.cgi"],
"publicationIds": [
"17478515\t\t10.1093/nar/gkm226",
{

"pmcid": "PMC3125778"
},
{

"pmid": "27098042",
"doi": "10.1093/nar/gkw199"

}
],
"annotations": [
"http://edamontology.org/topic_1775",
"operation_2436",
"data_3021",
"http://edamontology.org/format_1964"

],
"branches": ["topic", "operation", "data", "format"],
"matches": 6,
"obsolete": true

}

For testing, this input could be saved in a file, e.g. input.json, and then the following command run:

$ curl -H "Content-Type: application/json" -X POST -d '@/path/to/input.json' https://
→˓biit.cs.ut.ee/edammap/api

To supply the same data (except the “keywords”) as bio.tools input, the following could be used:

{
"tool": {
"name": "g:Profiler",
"description": "A web server for functional enrichment analysis and conversions

→˓of gene lists.",
"homepage": "https://biit.cs.ut.ee/gprofiler/",
"documentation": [{
"url": "https://biit.cs.ut.ee/gprofiler/help.cgi",
"type": "General",

(continues on next page)

32 Chapter 3. API

EDAMmap, Release 1.1.2-SNAPSHOT

(continued from previous page)

"note": null
}],
"publication": [{

"pmid": "17478515",
"pmcid": null,
"doi": "10.1093/nar/gkm226"

},{
"pmcid": "PMC3125778"

},{
"pmid": "27098042",
"pmcid": null,
"doi": "10.1093/nar/gkw199"

}],
"topic": [{
"term": "Function analysis",
"uri": "http://edamontology.org/topic_1775"

}],
"function": [{
"operation": [{
"term": "Gene-set enrichment analysis",
"uri": "http://edamontology.org/operation_2436"

}],
"input": [{
"data": {
"uri": "http://edamontology.org/data_3021"

},
"format": [{
"uri": "http://edamontology.org/format_1964"

}]
}],
"output": null

}]
},
"branches": ["topic", "operation", "data", "format"],
"matches": 6,
"obsolete": true

}

3.2 Prefetching

Once a query has been received by the API, content corresponding to webpageUrls, docUrls and publicationIds has
to be fetched (unless it has been fetched and stored in some previous occurrence), before mapping can take place.

This content could be prefetched and prestored in the database as a separate step, before the mapping query is sent.
This is useful in the web application, where content can be fetched as soon as the user has entered the corresponding
query details, and thus mapping time could be less when the entire query form is finally submitted. It might be of less
use in the API, but has been included nevertheless.

3.2.1 /api/web

3.2.1.1 Request

Links, whose content is to be prefetched, are specified as an array of strings under the JSON key webpageUrls.

3.2. Prefetching 33

https://pubfetcher.readthedocs.io/en/stable/fetcher.html
https://pubfetcher.readthedocs.io/en/stable/output.html#database

EDAMmap, Release 1.1.2-SNAPSHOT

In addition to webpageUrls, parameters from Fetching can be used, as these can influence the fetching.

3.2.1.2 Response

The main result of the query is not the content of the response itself, but the fact that the contents of the requested
links were stored in the database on the server. However, some informational output is still provided.

success true (if false, then the JSON output of Error handling applies instead of the one below)

webpageUrls Array of objects describing the completeness of the content of each link on the server

id A webpage URL specified in the request

status The status of that webpage. One of “broken”, “empty”, “non-usable”, “non-final”, “final”.

3.2.2 /api/doc

Analogous to /api/web, except for documentation and that the JSON key docUrls has to be used.

3.2.3 /api/pub

3.2.3.1 Request

Journal articles, whose content is to be prefetched, are specified using a PMID and/or PMCID and/or DOI. This is
done as an array of strings and objects under the JSON key publicationIds. If the ID is specified as a string, it has to be
in the form "<PMID>\t<PMCID>\t<DOI>". If it is specified as an object, the keys "pmid", "pmcid", "doi"
are to be used.

In addition to publicationIds, parameters from Fetching can be used, as these can influence the fetching.

3.2.3.2 Response

The main result of the query is not the content of the response itself, but the fact that the contents of the requested
articles were stored in the database on the server. However, some informational output is still provided.

success true (if false, then the JSON output of Error handling applies instead of the one below)

publicationIds Array of objects describing the completeness of the content of each article on the server

id IDs describing one publication specified in the request

pmid The PMID of the publication

pmcid The PMCID of the publication

doi The DOI of the publication

status The status of that publication. One of “empty”, “non-usable”, “non-final”, “final”, “totally final”.

3.2.4 Example

Try to prefetch the publication with PMID “23479348” and PMCID “PMC3654706”, increasing connect and read
timeout to give the server more time to fetch the whole publication:

$ curl -H "Content-Type: application/json" -X POST -d '{"publicationIds":[
→˓"23479348\tPMC3654706\t"],"timeout":30000}' https://biit.cs.ut.ee/edammap/api/pub

34 Chapter 3. API

https://pubfetcher.readthedocs.io/en/stable/output.html#database
https://pubfetcher.readthedocs.io/en/stable/output.html#broken
https://pubfetcher.readthedocs.io/en/stable/output.html#webpage-empty
https://pubfetcher.readthedocs.io/en/stable/output.html#webpage-usable
https://pubfetcher.readthedocs.io/en/stable/output.html#webpage-final
https://pubfetcher.readthedocs.io/en/stable/output.html#webpage-final
https://pubfetcher.readthedocs.io/en/stable/output.html#database
https://pubfetcher.readthedocs.io/en/stable/output.html#publication-empty
https://pubfetcher.readthedocs.io/en/stable/output.html#publication-usable
https://pubfetcher.readthedocs.io/en/stable/output.html#publication-final
https://pubfetcher.readthedocs.io/en/stable/output.html#publication-final
https://pubfetcher.readthedocs.io/en/stable/output.html#totallyfinal
https://pubfetcher.readthedocs.io/en/stable/cli.html#timeout

EDAMmap, Release 1.1.2-SNAPSHOT

Sample output:

{
"success" : true,
"publicationIds" : [{
"id" : {

"pmid" : "23479348",
"pmcid" : "PMC3654706",
"doi" : "10.1093/BIOINFORMATICS/BTT113"

},
"status" : "final"

}]
}

3.3 Error handling

If "success" is true in the JSON response, then HTTP status code was “200 OK” and the rest of the JSON is in
the format described above.

If "success" is false in the JSON response, then something has gone wrong, the HTTP status code is 400 Bad
Request or 500 Internal Server Error and the rest of the JSON will be in one of the following formats.

3.3.1 400 Bad Request

Status code 400 means something was done wrong on the client side (syntax error, bad parameter value, etc) and the
error should be fixed by the client, before another attempt is made.

The output JSON will have the following format:

success false

status 400

message A string describing the error

time Timestamp string (as ISO 8601 combined date and time) when the error occurred

3.3.2 500 Internal Server Error

Status code 500 is a catch all for all other errors. Usually, it should be some problem on the server side. It might
be temporary, so another try later might result in success. It might also be an unforeseen problem on the client side.
There’s a strong chance there is a bug somewhere, so feedback with a timestamp is appreciated (to GitHub issues or
by contacting the author).

The output JSON will have the following format:

success false

status 500

time Timestamp string (as ISO 8601 combined date and time) when the error occurred

3.3. Error handling 35

https://en.wikipedia.org/wiki/ISO_8601
https://github.com/edamontology/edammap/issues/
https://en.wikipedia.org/wiki/ISO_8601

EDAMmap, Release 1.1.2-SNAPSHOT

3.3.3 Examples

3.3.3.1 Syntax error in JSON

$ curl -H "Content-Type: application/json" -X POST -d '{"name"}' https://biit.cs.ut.
→˓ee/edammap/api

{
"success": false,
"status": 400,
"message": "Invalid token=CURLYCLOSE at (line no=1, column no=8, offset=7).

→˓Expected tokens are: [COLON]",
"time": "2018-05-28T12:59:57.389Z"

}

3.3.3.2 Bad parameter value

$ curl -H "Content-Type: application/json" -X POST -d '{"name":"test","goodScoreTopic
→˓":2}' https://biit.cs.ut.ee/edammap/api

{
"success": false,
"status": 400,
"message": "Param 'goodScoreTopic=2.0' is above limit 1.0",
"time": "2018-05-28T13:02:53.616Z"

}

3.3.3.3 Some other illegal requests

$ curl -H "Content-Type: application/json" -X POST -d '{"name":"test","annotations":[
→˓"http://edamontology.org/1775"]}' https://biit.cs.ut.ee/edammap/api

{
"success": false,
"status": 400,
"message": "Illegal EDAM URI: http://edamontology.org/1775",
"time": "2018-05-28T14:07:50.164Z"

}

$ curl -H "Content-Type: application/json" -X POST -d '{"name":"test","publicationIds
→˓":["23479348\tPMC3654706"]}' https://biit.cs.ut.ee/edammap/api

{
"success": false,
"status": 400,
"message": "Publication ID has illegal number of parts (2), first part is 23479348

→˓",
"time": "2018-05-28T14:09:04.032Z"

}

36 Chapter 3. API

EDAMmap, Release 1.1.2-SNAPSHOT

$ curl -H "Content-Type: application/json" -X POST -d '{"name":"test","webpageUrls":[
→˓"biit.cs.ut.ee/gprofiler"]}' https://biit.cs.ut.ee/edammap/api

{
"success": false,
"status": 400,
"message": "Malformed URL: biit.cs.ut.ee/gprofiler",
"time": "2018-05-28T14:10:23.651Z"

}

3.3. Error handling 37

EDAMmap, Release 1.1.2-SNAPSHOT

38 Chapter 3. API

CHAPTER 4

Ideas for future

Sometimes ideas are emerging. These are written down here for future reference. A written down idea is not neces-
sarily a good idea, thus not all points here should be implemented.

4.1 General

• In addition to tools, annotate also training materials.

• Generalise to other ontologies besides EDAM (#8). However, optimising specifically for EDAM is one of the
goals of EDAMmap.

• Use existing libraries of some other tools, like Maui or Kea, in addition to the current self-made approach.

• Try to use machine learning. Challenges include a large number of EDAM terms and the quality of manual
annotations currently in bio.tools. Also, there will be annotations added by previous versions of EDAMmap in
bio.tools. Maybe the ontology needs to be simplified, for example more specific terms removed.

4.2 Algorithm

• Currently, scores are not totally comparable across queries. Try to make a score in one query mean the same
thing in another query as exactly as possible.

• An extra query part could be tags present in some web pages, like software registries or code repositories. This
would require changes in PubFetcher.

• Maybe WordNet could be used as part of the mapping algorithm. For example use lemmatisation instead of
stemming.

• In results got from running EDAMmap against existing entries of bio.tools, look at FNs and see if anything can
be done to increase their score.

39

https://tess.elixir-europe.org/
http://edamontology.org/page
https://github.com/edamontology/edammap/issues/8
https://github.com/zelandiya/maui
http://www.nzdl.org/Kea/
https://bio.tools
https://pubfetcher.readthedocs.io/en/stable/future.html#structure-changes
https://wordnet.princeton.edu/

EDAMmap, Release 1.1.2-SNAPSHOT

4.2.1 Parameters

• Further investigate the effect of different parameter values, like the IDF parameters, stop words removal, stem-
ming, bi-directional matching, path enrichment, etc. Not all used methods necessarily improve results.

• Currently, default values for query normalisers and score limits have been manually tuned to give good results
for the usual input and default values of other parameters. Instead, try to automatically set the values of these
normaliser and limit parameters, based on the input queries and parameter values.

• Try to implement automatic parameter tuning to find optimal values for parameters. If parameters of some
methods give best results when turned off, then before discarding the methods, one should check that maybe
these methods sometimes find correct results that better methods fail to find.

• Some parameters could be changeable on a per EDAM branch basis.

4.2.2 Weights

• In Query weights, maybe the publication should have an overall weight instead of each usable publication part
influencing the score independently.

• Different publication full text parts (like image captions) could have different weights. This would require
changes in PubFetcher.

• Different publication types (primary, etc) and link types could have different weights. This would mean cate-
gorising links got through other means than bio.tools.

4.2.3 Measures

• Add measures about scores, like average maximum score of TPs, etc.

• Maybe also take into account the direct parents and children of an automatically found term when deciding if it
matches a manual annotation.

• Plot some measures, for example generate a precision-recall curve by varying the parameter matches.

4.2.4 Ontology

• EDAM is not a tree, but a DAG. Does this influence path enrichment? Look more into related terms influencing
each other in the results.

• Branch specific tweaks, for example terms from the topic branch could be more specific than terms from the
operation branch and maybe more terms could be output for topic than operation.

• Individual concept level tweaks, for example currently some terms are suggested too frequently (many FPs) and
others not frequently enough (many FNs, possible because of IDF weighting).

• For more homogeneous results, maybe bias EDAMmap towards some terms, that is some terms could be “more
recommended for annotation in bio.tools” than others.

• Look into using inter-branch relations (“has_input”, “has_output”, “has_topic”, etc). Have to be careful, as only
some terms have these defined.

• Some concepts have “hasRelatedSynonym” defined, it’s currently not read as it’s quite rare.

• Results for the data and format branch are not that good currently (thus disabled by default), look into improving
them.

40 Chapter 4. Ideas for future

https://pubfetcher.readthedocs.io/en/stable/future.html#structure-changes
https://biotools.readthedocs.io/en/latest/curators_guide.html#publication-type
https://biotools.readthedocs.io/en/latest/curators_guide.html#linktype
https://en.wikipedia.org/wiki/Directed_acyclic_graph

EDAMmap, Release 1.1.2-SNAPSHOT

4.3 Server

• Give progress information (a progress bar or simply some status information) after the MAP button is pressed
in the web app.

• Enable batch queries (more than one result per query is currently only possible on the command-line).

• Option to download the HTML report as a ZIP file.

• Option to choose the EDAM ontology version from a dropdown (or supply own file).

• Make the size of the server worker thread pool configurable.

4.4 Maintenance

• Update PubFetcher’s scraping rules, by testing the rules and modifying outdated rules in journals.yaml, web-
pages.yaml and most importantly the hardcoded rules for Europe PMC and other built-in resources.

• Update dependencies in pom.xml (but care should be taken to not cause regressions).

• Check for broken links in the documentation using make linkcheck.

• When a new biotoolsSchema is released, some code modifications might be necessary to adhere to it.

• Also, when a new EDAM ontology is released, some modifications might be necessary (for example in black-
list.txt and blacklist_synonyms.txt; also, any running EDAMmap-Server instances could be restarted to use the
new ontology version).

4.3. Server 41

https://pubfetcher.readthedocs.io/en/stable/scraping.html#scraping-rules
https://pubfetcher.readthedocs.io/en/stable/scraping.html#testing-of-rules
https://github.com/edamontology/pubfetcher/blob/master/core/src/main/resources/scrape/journals.yaml
https://github.com/edamontology/pubfetcher/blob/master/core/src/main/resources/scrape/webpages.yaml
https://github.com/edamontology/pubfetcher/blob/master/core/src/main/resources/scrape/webpages.yaml
https://europepmc.org/
https://pubfetcher.readthedocs.io/en/stable/fetcher.html#resources
https://github.com/edamontology/edammap/blob/master/pom.xml
https://github.com/bio-tools/biotoolsSchema
https://github.com/edamontology/edamontology
https://github.com/edamontology/edammap/blob/master/core/src/main/resources/edam/blacklist.txt
https://github.com/edamontology/edammap/blob/master/core/src/main/resources/edam/blacklist.txt
https://github.com/edamontology/edammap/blob/master/core/src/main/resources/edam/blacklist_synonyms.txt

	What is EDAMmap?
	Background
	bio.tools
	EDAM
	EDAMmap

	Outline
	Install
	Quickstart
	Repo
	Support
	License

	Manual
	Setup
	IDF

	Input
	CSV

	Parameters
	Processing

	Results
	EDAMmap-CLI
	EDAMmap-Server
	EDAMmap-Util

	API
	/api
	Query data
	EDAMmap input
	bio.tools input

	Parameters
	Main
	Preprocessing
	Fetching
	Mapping

	Response
	core
	full

	Examples

	Prefetching
	/api/web
	Request
	Response

	/api/doc
	/api/pub
	Request
	Response

	Example

	Error handling
	400 Bad Request
	500 Internal Server Error
	Examples
	Syntax error in JSON
	Bad parameter value
	Some other illegal requests

	Ideas for future
	General
	Algorithm
	Parameters
	Weights
	Measures
	Ontology

	Server
	Maintenance

